Fossil record of stem groups employed in evaluating the chronogram of insects (Arthropoda: Hexapoda)

نویسندگان

  • Yan-hui Wang
  • Michael S. Engel
  • José A. Rafael
  • Hao-yang Wu
  • Dávid Rédei
  • Qiang Xie
  • Gang Wang
  • Xiao-guang Liu
  • Wen-jun Bu
چکیده

Insecta s. str. (=Ectognatha), comprise the largest and most diversified group of living organisms, accounting for roughly half of the biodiversity on Earth. Understanding insect relationships and the specific time intervals for their episodes of radiation and extinction are critical to any comprehensive perspective on evolutionary events. Although some deeper nodes have been resolved congruently, the complete evolution of insects has remained obscure due to the lack of direct fossil evidence. Besides, various evolutionary phases of insects and the corresponding driving forces of diversification remain to be recognized. In this study, a comprehensive sample of all insect orders was used to reconstruct their phylogenetic relationships and estimate deep divergences. The phylogenetic relationships of insect orders were congruently recovered by Bayesian inference and maximum likelihood analyses. A complete timescale of divergences based on an uncorrelated log-normal relaxed clock model was established among all lineages of winged insects. The inferred timescale for various nodes are congruent with major historical events including the increase of atmospheric oxygen in the Late Silurian and earliest Devonian, the radiation of vascular plants in the Devonian, and with the available fossil record of the stem groups to various insect lineages in the Devonian and Carboniferous.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A molecular palaeobiological exploration of arthropod terrestrialization

Understanding animal terrestrialization, the process through which animals colonized the land, is crucial to clarify extant biodiversity and biological adaptation. Arthropoda (insects, spiders, centipedes and their allies) represent the largest majority of terrestrial biodiversity. Here we implemented a molecular palaeobiological approach, merging molecular and fossil evidence, to elucidate the...

متن کامل

Phylotranscriptomics to bring the understudied into the fold: monophyletic ostracoda, fossil placement, and pancrustacean phylogeny.

An ambitious, yet fundamental goal for comparative biology is to understand the evolutionary relationships for all of life. However, many important taxonomic groups have remained recalcitrant to inclusion into broader scale studies. Here, we focus on collection of 9 new 454 transcriptome data sets from Ostracoda, an ancient and diverse group with a dense fossil record, which is often undersampl...

متن کامل

Phylogenetic Distribution of Extant Richness Suggests Metamorphosis Is a Key Innovation Driving Diversification in Insects

Insects and their six-legged relatives (Hexapoda) comprise more than half of all described species and dominate terrestrial and freshwater ecosystems. Understanding the macroevolutionary processes generating this richness requires a historical perspective, but the fossil record of hexapods is patchy and incomplete. Dated molecular phylogenies provide an alternative perspective on divergence tim...

متن کامل

Elongation factor-2: a useful gene for arthropod phylogenetics.

Robust resolution of controversial higher-level groupings within Arthropoda requires additional sources of characters. Toward this end, elongation factor-2 sequences (1899 nucleotides) were generated from 17 arthropod taxa (5 chelicerates, 6 crustaceans, 3 hexapods, 3 myriapods) plus an onychophoran and a tardigrade as outgroups. Likelihood and parsimony analyses of nucleotide and amino acid da...

متن کامل

First molecular evidence for the existence of a Tardigrada + Arthropoda clade.

The complete 18S rDNA gene sequence of Macrobiotus group hufelandi (Tardigrada) was obtained and aligned with 18S rDNA and rRNA gene sequences of 24 metazoans (mainly protostomes). Discrete character (maximum-parsimony) and distance (neighbor-joining) methods were used to infer their phylogeny. The evolution of bootstrap proportions with sequence length (pattern of resolved nodes, PRN) was stud...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2016